International Journal of Computational Geometry & Applications
© World Scientific Publishing Company

A POINT-PLACEMENT STRATEGY FOR CONFORMING
DELAUNAY TETRAHEDRALIZATION!

MICHAEL MURPHY?

Department of Computer Science
University of Maryland— College Park,
College Park, MD 20742 3

and

DAVID M. MOUNT
Department of Computer Science and Institute for Advance Computer Studies
University of Maryland— College Park,
College Park, MD 20742 *

and

CARL W. GABLE
Geoanalysis Group, Earth and Environmental Science Division
Los Alamos National Laboratory
Los Alamos, NM 87544

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

A strategy is presented to find a set of points that yields a Conforming Delaunay
tetrahedralization of a three-dimensional Piecewise-Linear Complex (PLC). This algo-
rithm is novel because it imposes no angle restrictions on the input PLC. In the process,
an algorithm is described that computes a planar conforming Delaunay triangulation of a
Planar Straight-Line Graph (PSLG) such that each triangle has a bounded circumradius,
which may be of independent interest.

Keywords: Delaunay triangulations, Unstructured mesh generation

1. Introduction

In many two- and three-dimensional geometric modeling problems, notably the

1A preliminary version of this paper appeared in the Proceedings of the 11th ACM-SIAM
Symposium on Discrete Algorithms 2000, 67-74

2Author’s Current Address: LizardTech, Inc. 821 Second Avenue, 18th Floor, Seattle, WA
98104

3Much of this work was done while the author was at Los Alamos National Laboratory.

4This author was supported by the National Science Foundation under grant CCR~9712379.



numerical approximation of the solution to a Partial Differential Equation with a
Finite-Element type method,?! it is very desirable to obtain a triangulation (tetra-
hedralization) that respects the domain of interest. The task of forming such de-
compositions, along with ensuring that the elements of the decompositions satisfy
application-specific quality requirements, is sometimes referred to as unstructured
mesh generation. See Ref. [2] for a survey. The Delaunay triangulation, a celebrated
structure in Computational Geometry, can play a central role in this process'!-20
due to many important geometric properties and the existence of efficient algo-
rithms to compute and maintain one with a dynamic set of points. (We shall
assume the reader is familiar with the Delaunay triangulation and its basic prop-
erties, notably the “empty-circle” characterization. See Ref. [15] for a definition,
a discussion of its properties, and algorithms for computing and maintaining the
Delaunay triangulation.) Adapting the Delaunay triangulation, defined over point
sets, to more complicated geometric domains such as arbitrary polygons or polyhe-
dra, has proven to be a major challenge of unstructured mesh generation. To cope,
researchers have developed the Constrained Delaunay triangulation, which changes
the “empty-circle” criterion based on the domain. Another adaptation is the Con-
forming Delaunay triangulation, which is obtained when the domain is respected
by the Delaunay triangulation of a set of representative points. Thus, to obtain a
conforming Delaunay triangulation of a domain, the resolution typically must be
increased through the addition of points, often called Steiner points. In the plane,
these structures are well-understood and efficient algorithms to work with them are
known. However, the analogs of these structures in three and higher dimensions
pose many algorithmic challenges. In this paper, we address part of the challenges
of three-dimensional unstructured mesh generation by giving a provably correct
algorithm to construct a Conforming Delaunay tetrahedralization.

1.1. Piecewise-linear representations

We start by elaborating upon what we mean by a domain. We shall con-
centrate on piecewise-linear representations. Polygons and polyhedra fall into this
class. However, for problems involving multiply connected boundaries, they are
not expressive enough. For example, in a geological application, one may need
to represent several layers of rocks, each having unique material properties that
need to be distinguished in the simulation. The boundaries between rock layers,
the material interfaces, may be very complicated, especially if there are cracks
and faults present. For such demanding applications, the most general class of
two-dimensional piecewise-linear representations, the Planar Straight Line Graph
(PSLG), (see e.g. Ref. [15]) which encompasses polygons, polygons with holes, and
all other planar, piecewise-linear, multi-material representations, is needed. PSLGs
consist of vertices and line segments, also referred to as edges. Vertices are specified
by providing the coordinates. Line segments are specified by giving the connections
between vertices; the line segments must be non-overlapping, except when meeting
at a common vertex. In three dimensions the Piecewise-Linear Complex (PLC)
(using the notation in'%2%) is the most general representation. In the PLC model,



the objects consist of vertices, line segments, and planar faces. Weiler?? gives an
equivalent formulation of a PLC as well as the “Radial-Edge” data structure to
represent one.

1.2. Conforming Delaunay triangulations

We return to the problem of adapting Delaunay triangulations to piecewise-
linear domains. One adaptation, the Constrained Delaunay triangulation, relaxes
the “empty-circle” property. A formal definition and a ©(n logn) algorithm to com-
pute one in the plane are given in Ref. [6]. Although in three dimensions, there is
no immediate generalization of the Constrained Delaunay triangulation, a structure
known as a Conforming-Constrained Delaunay tetrahedralization can be defined.'®
However, it should be noted that Constrained and Conforming-constrained Delau-
nay triangulations and tetrahedralizations are not as helpful with some numerical
schemes because the quality requirements imposed on internal boundaries (material
interfaces) imply that triangles incident upon these edges are “locally Delaunay.”
Specifically, for an internal edge in a PSLG, P, some schemes require that the two
angles opposite that edge in the triangulation of P be nonobtuse. The generaliza-
tion of these schemes to three dimensions often require that two tetrahedra sharing
a face of a PLC contain their circumcenters.

Therefore, although no Steiner points are required to obtain a Constrained De-
launay triangulation and the Constrained-Conforming Delaunay tetrahedralization
may require fewer Steiner points, algorithms to compute Conforming Delaunay
triangulations and tetrahedralizations are of great interest in unstructured mesh
generation. To obtain a Conforming Delaunay triangulation of a PSLG, P, one
places Steiner points to ensure that all of the edges of P are represented in the
Delaunay triangulation of the original point set together with the Steiner points.
For this purpose, Steiner points never need to be placed anywhere but on the edges
of the PSLG; this is often referred to as edge refinement. The sufficiency of edge
refinement is a consequence of the following standard lemma (see e.g. Ref. [19]):
Lemma 1 An edge e of a PSLG P with vertex set V is an edge of the Delaunay
triangulation of V if and only if there exists o disk with the vertices of e on its
boundary containing no points of V' in its interior.

Saalfeld’s algorithm!” for computing a Conforming Delaunay triangulation of a
PSLG is based directly upon Lemma 1. To see the intuition, imagine for the moment
that we have a PSLG, P, that consists of completely disjoint line segments. (That
is, only one line segment is incident upon a vertex.) One strategy to satisfy Lemma
1 in this special case is to compute the closest distance between two segments
dmin > 0. Next, pack a set of closed disks centered on every edge e with a radius
strictly less than d,,;, so that two adjacent disks in the packing are tangent upon
their common point of intersection with e. Steiner points can then be placed on
e at these points of tangency, as shown in Figure 1(b). This strategy decomposes
each edge of P into smaller edges, each of which satisfies Lemma 1 because the
disks covering e cannot contain a point on another edge in their interior. Thus, we
have a conforming Delaunay triangulation. Of course, many edges of a PSLG can



be incident on a common vertex. Hence, the first phase of Saalfeld’s algorithm is
to guard every vertex v by placing a sufficiently small disk centered around v so
that the disk does not intersect any edge not incident upon v. The radius of such
a disk could, for example, be computed by finding the minimum of the distance
between the closest pair of vertices and the shortest distance between a vertex and
a non-incident edge and dividing this quantity by 3. Steiner points are placed at
the intersection of this disk with the edges of v. As shown in Figure 1(a), the
minimum diameter circle passing through the portion of each edge from v to these
Steiner points will be empty, satisfying Lemma 1. After this step, what remains is
in essence a set of disjoint edges that can be processed in the manner just described.

@ (b)

Figure 1: Key steps in Saalfeld’s Conforming Delaunay triangulation algorithm.
(a): Protecting the vertices. (b): Covering the edges with empty tangent circles.

Because it can place an excessive number of Steiner points, Saalfeld’s algorithm
should be viewed more as a simple existence proof of a Conforming Delaunay trian-
gulation than as a practical algorithm. There are at least two noteworthy provably
correct algorithms to find a Conforming Delaunay triangulation of a PSLG that
are sensitive to the number of Steiner points. The first is Edelsbrunner and Tan’s
algorithm,? which gives a striking O(n®) combinatorial upper bound on the num-
ber of Steiner points placed, where n is the input size. The other is Ruppert’s
Delaunay-Refinement algorithm!® using “the Quitter”!® to resolve small input an-
gles. Although the latter algorithm does not admit combinatorial bounds on the
number of Steiner points placed — the bounds come from the local-feature-size, an
intrinsic geometric property of the domain — Ruppert’s algorithm is quite practical
and can be used to construct a no-small-angle triangulation, useful in bounding
discretization error in the Finite-Element method.

1.8. A strategy for conforming Delaunay tetrahedralization

Many heuristic, or at least unproven, algorithms can be found in the lit-
erature to successfully compute a Conforming Delaunay tetrahedralization. See
e.g. Ref. [12]. However, a provably correct algorithm for computing a Conforming
Delaunay tetrahedralization of a general PLC is an open problem.3:%%10:1 Some
provably correct algorithms to find a conforming Delaunay tetrahedralization make
stringent angle restrictions on the input PLC.2%:'* To be sure, these algorithms



were designed to provide “quality” Delaunay tetrahedralizations, where a bounded
ratio of circumradius to shortest edge of each tetrahedron is the measure of interest,
rather than any Delaunay tetrahedralization. However, unlike Ruppert’s planar al-
gorithm, which has a similar motivation and makes similar angle restrictions that
can be side-stepped to obtain a conforming Delaunay triangulation (albeit with no
no-small-angle quality guarantees in the vicinity of the small angles), these restric-
tions are not as readily resolved. Our purpose is to give an algorithm to find a
Conforming Delaunay triangulation of a PLC P with no restrictions on the an-
gles of P, a step towards both practical and provably correct Delaunay-based mesh
generation in three dimensions.

The problem in three dimensions is more involved because both edges and faces

of a PLC must be refined until they are part of the Delaunay tetrahedralization
of the augmented point set. The three-dimensional analog of Lemma 1 for edges
in a PLC not part of any face remains the same except that we require empty
balls rather than disks. A straightforward generalization of Saalfeld’s algorithm
can be used to process these edges. Therefore, such hanging edges are considered
no further. Rather, we are concerned with refining the faces. The analog of Lemma
1 becomes:
Lemma 2 A triangular face f (or a face with four or more cocircular vertices) of
o PLC P with vertex set V is a face in the Delaunay tetrahedralization of V if and
only if there exists a ball with the vertices of f on its boundary containing no points
of V in its interior.

The algorithm we describe is motivated by the following observation: Suppose
we are given a set of disjoint faces in R® which we wish to refine so that the Delaunay
tetrahedralization of the augmented point set conforms to these faces. A sufficient
but not necessary condition is to find a planar Delaunay triangulation of each face
with the property that for each triangle, ¢, the circumscribing sphere of radius equal
to the radius of the (planar) circumcircle of ¢ does not intersect any other face. Note
that this sphere is the one of minimum radius circumscribing ¢. A planar conforming
Delaunay triangulation of each face where each triangle has a radius bounded by
the distance to the nearest face in the PLC will satisfy this condition. To obtain this
triangulation, Steiner points may have to be placed along the edges of a face as well
as in its interior. We give an adaptation of Chew’s guaranteed-quality Delaunay
triangulation algorithm” for this purpose in Section 2.

Of course, the faces need not be disjoint. As a consequence, the above strategy
fails because the distance between two incident faces is zero. However, methods
used in our adaptation of Chew’s algorithm to protect vertices and edges extend to
three dimensions. What remains after these protection phases is a set of disjoint
subfaces which we can refine with our bounded circumradius conforming Delaunay
triangulation algorithm. We show that the results of the protection phases and the
planar triangulation phases do not interfere. Thus, we have a refinement of the
PLC such that a Conforming Delaunay tetrahedralization can be obtained from its
vertices.



2. Delaunay triangulations with bounded circumradii

We proceed by finding a conforming Delaunay triangulation of a PSLG such
that the circumradius of each triangle is bounded from above by a pre-specified
constant. One early guaranteed-quality Delaunay triangulation algorithm due to
Chew” shows promise. Although the intention of his algorithm is to produce a
Constrained Delaunay triangulation such that the angles in the triangulation are
between 30 and 120 degrees, it also generates triangles with bounded circumradii.
However, before applying his algorithm to our task, two problems need to be ad-
dressed. First, the precondition of his algorithm requires that no input angle be less
than 30 degrees. Second, his algorithm does not guarantee a Conforming Delaunay
triangulation, only a Constrained Delaunay triangulation. We present modifications
that address both issues while maintaining the user-specified upper bound on the
largest circumradius.

2.1. Review of Chew’s algorithm

Chew’s algorithm takes as input a PSLG P such that no angle incident upon
a vertex is less than 30 degrees and a parameter r,,,; from the user. The output is
a Constrained Delaunay triangulation such that the circumradius of each triangle
does not exceed T,4,- The first step of his algorithm refines the edges of P into
subsegments whose lengths are in the range [h, \/gh] for some h < 742- The pa-
rameter h must be chosen small enough so that such a refinement is possible and
so that h is no larger than the closest distance between any two (Steiner or input)
vertices. Because of the precondition on the smallest angle, such a value always
exists. (A general strategy for finding such an edge partition is given below.) After
computing the Constrained Delaunay triangulation of the modified PSLG, circum-
centers of triangles whose radii are larger than h are inserted, one at a time. The
Constrained Delaunay triangulation can be restored after each such Steiner point
insertion using Lawson’s algorithm.'® The process continues until no triangles with
circumradii exceeding h exist, which Chew demonstrates always occurs eventually.

2.2. Treating the small angles

If the input PSLG contains angles less than 30 degrees, finding a value for h
so that the PSLG is decomposed into edges of length in the range [h,+/3h] and so
that no two vertices are of distance less than h is impossible. However, recall that
Chew’s primary goal was not to assert that his algorithm creates triangles with
small circumradii but rather to bound the angles of each triangle. Although we
make use of the bounds on the edge lengths in our proof, we can tolerate arbitrarily
small angles by transforming PSLGs containing them to ones Chew’s algorithm
can process by adding a vertex-protection phase, resembling Saalfeld’s, prior to
invoking Chew’s algorithm. We describe this phase in conjunction with the initial
edge-refinement process.

Consider a PSLG P. Let § be the minimum distance either between any two
vertices or between a vertex and any non-incident edge. Let ¢ be the minimum of



/4 and the angle between two edges that share a vertex. Let r = §/3, and let h
be any quantity that is no greater than the length of a chord of a circle of radius

r subtending an angle of ¢/2. (By the law of cosines, h < 74/2(1 — cos(¢/2)).)
Because ¢ < m/4, it is easy to verify that h < r/2; see Figure 2.

r

0/2
r

Figure 2: If ¢ < /4 then h < r/2.

As in Saalfeld’s vertex-protection phase, each vertex is surrounded by a protect-
ing circle of radius r. Steiner points are placed at the intersection of each circle
with the edges of P. This subdivides each circle into a collection of arcs of angular
sizes at least ¢. Each arc of angle 6 is further subdivided into k = |20/¢| subarcs
of equal sizes. Of course, if the subarc is outside the external boundary, we do no
need to refine it. Steiner points are placed at the endpoints of these intervals. By
connecting consecutive Steiner points, we form a convex polygon surrounding each
input vertex. We shall refer to the edges of this polygon as its rim edges. We con-
nect the central vertex to these points by a set of spokes, forming a set of isosceles
triangles. This is illustrated in Figure 3 for an internal vertex in the domain.

<l

Figure 3: A vertex of a PSLG is protected by a circle of appropriate radius. In-
tersection points are added, and Steiner points are placed on the circle to satisfy
Chew’s point-spacing criteria.

We assert that the lengths of rim edges are in the interval [h, /3h]. This is true
because 6 > ¢ implies that & > 2. Combining this and the definition of k£ we have

By o D
¢ o (k+1)¢
2 S %S %
¢ g 3¢ ¢
5 S <7< \/55.

Each subarc is of angular size /k. Two points subtending a subarc of angle ¢/2
are at distance h apart, and two points subtending a subarc of \/5(}5/ 2 are at most
distance hv/3 apart, as desired.



As we have just seen, the angles between consecutive spokes is less than 3¢/4 <
/3. Consider any isosceles triangle whose base is of length b and whose opposite
angle at most 7/3. It is straightforward to show that its circumcircle extends a
distance at most b/(2v/3) beyond the base. Since b < v/3h, the circumcircles from
this part of the construction do not extend a distance more than h/2 outside of the
surrounding convex polygon. We use this fact later.

Observe that no two non-incident pairs (vertex-vertex or vertex-edge) can be
closer than distance 3r, implying that even after adding the surrounding circles of
radius r, all non-incident entities are separated by a distance of at least r > 2h.

We create a new PSLG P’ to be supplied to Chew’s algorithm by starting with
P, adding the protecting polygons, discarding the original vertices of P and the
portion of its edges that fall inside the protecting polygons. The edges of P’ which
are not rim edges are of length at least r (the minimum distance between circles).
Each such edge of length  is subdivided into j = |I/h| subsegments of equal lengths
and Steiner points are placed at the endpoints of each subsegment. As noted earlier,
h/2 < r <1, implying that j > 2. By the same argument above, it follows that the
length of each subsegment is in the interval [h, hv/3]. Because no two consecutive
vertices are closer than h, and no two non-incident entities are closer than 2h, it
follows that no two vertices of this construction are closer than h. Thus, we can
apply Chew’s algorithm to the result.

We claim that after applying Chew’s algorithm to P’ and restoring the vertices of
P and the spokes of the protecting polygons, any pair of triangles sharing a rim edge
(i.e., one spoke triangle and one generated by Chew’s algorithm opposite to it) are
“locally Delaunay.” The reason is that Chew’s algorithm does not place any vertices
within distance h/2 of any boundary edge. By the observation made earlier, the
circumcircles defined by these isosceles triangles do not extend outside of the convex
polygon by a distance more than h/2. Thus Chew’s triangles are protected from
the circumcircles of the “spoke triangles.” As a check, the circumcircles generated
by Chew’s algorithm do not penetrate the protecting polygon by a distance of more
than 3h/2 and therefore cannot contain the vertex of P protected by the polygon.
Thus, the spoke triangles and Chew’s triangles do not interfere with each other.

2.3. Protecting the input edges

However, running the above vertex-protection scheme followed by Chew’s al-
gorithm on the modified PSLG P’ will not necessarily give a Conforming Delaunay
triangulation of P’. This is because a pair of Chew’s triangles sharing a bound-
ary edge can be obtuse, violating the “empty-circle” condition (although they are
“Constrained Delaunay.”) See Figure 4.

To remedy this, we would like to buffer each edge e so that a circumcircle of a
triangle generated by Chew’s algorithm on one side of e cannot contain a vertex
on the opposite side of e. The strategy is to extrude parallel edges from e into the
domain. Extrusion can begin after the protecting circles of radius r for each vertex
have been computed as above. Again, let ¢ be the minimum of 7/4 and the angle
between two edges that share a vertex in P. The edge extrusion distance, d., can



Figure 4: Why Chew’s algorithm only guarantees a Constrained Delaunay triangu-
lation. Assume e = (i,7) is an internal boundary edge and the points on opposite
sides were placed by Chew’s algorithm.

be any quantity that is no greater than the length of a chord of a circle of radius r
subtending an angle of ¢/3. For each edge e = (i, j) of P, we place Steiner points
on the protecting circles of 4 and j at a distance d. from e inside the domain. (If e is
an internal edge, this will result in four Steiner points; if e is an external boundary
edge, this will give only two points.) We form the protecting edges parallel to e by
connecting these Steiner points to their counterparts on the circle protecting the
adjacent vertex, as illustrated in Figure 6(b). Note that using ¢/3 to compute d,
means that two extruded edges are never closer than a distance of d.

We now consider the initial buffer zone of a face to be anything inside the
protecting circles or within a distance d. of an edge of the face. For the purposes
of invoking Chew’s algorithm, we need to refine the boundary of all initial buffer
zones into segments of length [h, hv/3] such that no two points are closer than h
for some suitable value of h. Specifically, it is necessary to ensure that h < 2d, or
the buffer zones will not be large enough to prevent interference between triangles
generated by Chew’s algorithm on opposite faces of P. However, this constraint
is trumped by the constraint that h must be chosen such that no two points are
closer than h after refinement; since the closest pair of points can be of distance
de (i.e., the endpoints of two extruded edges on the same protecting circle), it is
necessary that h < d.. We claim it is possible to refine the boundary of the buffer
zone using any h < d. /2 to satisfy Chew’s length requirements above because it is
impossible to refine the boundary to create angles less than 30 degrees when viewed
from outside the buffer zone. For reasons that will become apparent below, it is
desirable to refine the edge protectors and e identically. This alignment of Steiner
points is illustrated in Figure 5; the refinement of the initial buffer zone is shown
in Figure 6(c).

Figure 5: Two parallel edges are extruded from e = (i,7) to connect 7 and j’s
protecting circles. The three edges are refined with the same point distribution.



After invoking Chew’s algorithm on this modified PSLG, we triangulate the
buffer zone, as illustrated in Figure 6(d). We now argue that these triangles do not
interfere with the triangles generated by Chew’s algorithm. For the same reasons as
before, the spoke triangles are locally Delaunay. The other type of triangles, those
incident upon Steiner points placed on e, cannot extend a distance more than h/2
outside of the buffer zone. This is because of the relationship between h and d..
Specifically these triangles are the result of (arbitrary) triangulations of rectangles
of dimensions at most v/3h by d, and d. > h by definition.

We now have the following theorem:

Theorem 1 A PSLG can be refined so that a Conforming Delaunay triangulation is
obtained with the property that the circumradii of each Delaunay triangle is bounded
from above by a pre-specified constant using a finite number of Steiner points.

<

Figure 6: (a) A portion of a PSLG (b) Finding protecting circles and edges. (c)
The PSLG passed to Chew’s algorithm to triangulate everything outside the buffer
zones. (d) The triangulation of the interior of the buffer zone.

3. Extending to three dimensions

3.1. Overview

We extend the above algorithm to find a Conforming Delaunay tetrahedral-
ization of a PLC, P. Like the two-dimensional algorithm, we create buffer zones
around the shared vertices and edges of faces. We then use Chew’s algorithm to
create a (planar) conforming Delaunay triangulation of the portions of the faces

10



outside the buffer zones such that the minimum diameter sphere of every triangle
in these triangulations cannot intersect another planar face outside a buffer zone.
This is illustrated in Figure 7. This satisfies Lemma 2 for each triangle if the buffer
zones do not contain points where these spheres intersect. Again, the crux is to de-
fine the buffer zones and refine them into triangles so that they do not interfere with
the triangles produced by Chew’s algorithm. Fortunately, the vertex and edge pro-
tection methods of our planar bounded-radius conforming Delaunay triangulation
algorithm given above extend easily into three dimensions. The intuition behind the
extensions is that when we protect shared vertices of P, we use protecting spheres
centered at these vertices rather than protecting circles. To protect edges, we place
protecting cylinders around them. However, the phrases “protecting spheres”and
“protecting cylinders” are not entirely accurate because it is acceptable for a De-
launay edge to pierce these spheres and cylinders in the final tetrahedralization of
the point set, if the piercing edge does not cross a face of P.

3.2. Creating the buffer zones

The first step is to compute the size of the buffer zones. The values of d, and r
defined above can be used for this purpose. The only difference in their computation
is that we use as our § the minimum distance between any two adjacent vertices
or any two non-incident entities (vertex-vertex vertex-edge, vertex-face, edge-edge,
edge-face, face-face). To avoid problems with ambiguities caused by two incident
faces that pass close to each other far from the points of incidence (as can occur
with non-convex faces), assume all faces are triangulated arbitrarily. We do not
take into account dihedral angles at this point.

Figure 7: (a) Edge (i,) has three faces incident upon it. (b) The buffer zones on
each face formed by vertex-protection and edge-extrusion. (¢) The disjoint faces
passed to Chew’s algorithm to triangulate.

For each vertex v, intersect each face incident upon v with a protecting circle of
radius r centered at v. This could be viewed as forming a protecting sphere of radius
r around v. We also install the edge-protectors. Consider an edge e. For every face
incident upon e, we place a Steiner point on the protecting arcs of that face at both
of the endpoints of e at a distance d. from e and form the parallel protecting edges
as before by connecting these Steiner points. This can be imagined by intersecting a
cylinder with radius d. and axis e with the incident faces of e. We also place Steiner
points at the orthogonal projection of these Steiner points onto e. As before, we do

11



not consider the arcs on each face inside the edge protector; we consider the buffer
zone of a face to be anything inside the protecting circle or within a distance d, of
e on the face.

We now refine the boundaries of the buffer zones. To do so, we compute a
spacing value h for Chew’s algorithm based upon the closest pair of features. This
is a function of the dihedral angles and the closest pair of Steiner points placed
in the vertex and edge protection steps above. Specifically, let a be the smallest
dihedral angle of P. Let dy be the length of the base of an isosceles triangle with
angle a and side lengths d.. We claim any h < min(d.,df)/2 can be used to refine
the buffer zone of each face into segments of length between [h, h/3] such that no
two Steiner points after the refinement of each face will be closer than h. As before,
we must ensure that the protecting edges are refined identically, as well as the edges
they are protecting. We can now run Chew’s algorithm on the portion of each face
of P outside of the buffer zones to create a conforming Delaunay triangulation with
h as the maximum radius of any circumcircle.

We claim that every one of Chew’s triangles satisfies Lemma 2. First, spheres
of radii equal to the circumradii of Chew’s triangles not incident upon an edge of
the buffer zone cannot intersect any other entity in the PLC, due to the bounds
on the circumradii given by h. Second, if a circumradius of one of Chew’s triangles
intersects another face, it is because it is incident upon the buffer zone. We claim it
only intersects a portion of a buffer zone where no points are placed. This follows
from the alignment of Steiner points of the protecting edges with the input edges and
the bounds on the circumradii. It is straightforward to show the triangles inside the
buffer zones do not interfere with each other because of the spherical and cylindrical
distributions of the points, point alignment on the edges and edge-protectors, and
edge spacing. This gives our main result:

Theorem 2 A PLC P can be refined so that the Delaunay tetrahedralization of its
augmented vertex set conforms to P with a finite number of Steiner points.

4. Conclusion

In essence, we have given a generalization of Saalfeld’s Conforming Delaunay
triangulation algorithm to three dimensions. Like its planar counterpart, our algo-
rithm places far too many points to be practical and should be viewed more as an
existence proof. Indeed, we chose to mimic Saalfeld’s algorithm because it was the
most straightforward one we knew. Nonetheless, we conjecture that the techniques
we present for protecting vertices and edges in the presence of small input angles
can be adapted to work in practice (e.g, by allowing r and d, to vary according to
some notion of “local feature size” and application-driven edge length requirements)
with a Delaunay refinement algorithm which is stingier with Steiner points.

Finally, we would like to add some remarks concerning mesh quality. Since
we have chosen to use Chew’s algorithm, the quality of the boundary triangles
generated by his algorithm is guaranteed in both a no-small-angle as well as a
no-large-angle sense. This is a good starting point for generating tetrahedra with
bounded radius-to-edge ratios. Moreover, the triangles inside the buffer zones are

12



all nonobtuse. Finally, because we have ensured that the minimum diameter cir-
cumsphere of each boundary triangle is empty, meshes generated with our strategy
would guarantee an M-matrix when Poisson’s equation is discretized using the pop-
ular Control-Volume method.'*® Satisfying this latter criterion is very desirable,
especially in time-dependent simulations.

References

1.

T. Baker. Delaunay—Vorono-i. methods. In J. F. Thompson, B.K Soni, and N.P.
Weatherill, editors, Handbook of Grid Generation, pages 16.1-16.11. CRC Press,
Boca Raton, 1999.

. M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In D.-Z. Du

and F. K. Hwang, editors, Computing in Euclidean Geometry, volume 1 of Lecture
Notes Series on Computing, pages 23-90. World Scientific, Singapore, 1992.

M. Bern and P. Plassmann. Mesh generation. Unpublished Manuscript, 1997.
Available at http://www.ics.uci.edu/~eppstein/280g.

P. R. Cavalcanti and U. Mello. Three-dimensional constrained Delaunay triangula-

tion: A minimalist approach. In Proc. 8th International Meshing Roundtable, Lake
Tahoe, CA, 1999. Sandia National Laboratories.

. S.W. Cheng, T.K. Dey, H. Edelsbrunner, M.A. Facello, and S.H. Teng. Sliver

exudation. In Proc. 15th Annu. ACM Sympos. Comput. Geom., 1999.
L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4:97-108, 1989.

7. L. P. Chew. Guaranteed-quality triangular meshes. Technical Report TR 89-983,

10.

11.

12.

13.

14.

15.

16.

17

Dept. Comput. Sci., Cornell Univ., Ithaca, NY, 1989.

Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tessellations: applications
and algorithms. SIAM Review, 41:637-676, 1999.

H. Edelsbrunner and T.-S. Tan. An upper bound for conforming Delaunay triangu-
lations. Discrete Comput. Geom., 10(2):197-213, 1993.

P. L. George. Tet meshing: Construction, optimization, and adaptation. In Proc.
8th International Meshing Roundtable, Lake Tahoe, CA, 1999. Sandia National
Laboratories.

P. L. George and H. Borouchaki. Delaunay Triangulation and Meshing: Application
to Finite-Elements. Hermes, New York, NY, 1998.

M. Held, J. T. Klowsowki, and J. S. B. Mitchell. Evaluation of collision detection
methods for virtual reality fly-throughs. In C. Gold and J.-M. Robert, editors, Proc.
Tth Canad. Conf. Computat. Geometry, pages 205-210, 1995.

C. L. Lawson. Software for C! surface interpolation. In J. R. Rice, editor, Math.
Software III, pages 161-194, New York, NY, 1977. Academic Press.

G. L. Miller, D. Talmor, S.-H. Teng, N. Walkington, and H. Wang. Control volume
meshes using sphere packing: Generation, refinement, and coarsening. In Proc.
oth International Meshing Roundtable, Albuquerque, NM, 1996. Sandia National
Laboratories.

F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, NY, 1985.

J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh gen-
eration. Journal of Algorithms, 18(3):548-585, 1995.

A. Saalfeld. Delaunay edge refinements. In Proc. 8rd Canadian Conf. Comp.

13



18.

19.

20.

21.

22.

Geometry, pages 33-36, 1991.

J. R. Shewchuk. Delaunay refinement mesh generation. PhD thesis,
School of Computer Science, Carnegie Mellon University, 1997.  Available at
http://www.cs.berkeley.edu/~jrs.

J. R. Shewchuk. A condition guaranteeing the existence of higher-dimensional
constrained Delaunay triangulations. In Proc. 14th Annu. ACM Sympos. Comput.
Geom., 1998.

J. R. Shewchuk. Tetrahedral mesh generation by Delaunay refinement. In Proc.
14th Annu. ACM Sympos. Comput. Geom., 1998.

G. J. Strang and G. Fix. An Analysis of the Finite-Element Method. Prentice-Hall,
1973.

K. J. Weiler. The radial edge structure: A topological representation for non-
manifold geometric modeling. In J. Encarnacao M. Wozny, H. McLaughlin, editor,
Geometric Modeling for CAD Applications. Springer Verlag, 1987.

14



